Research Summary: Biochemical Comparison of Anopheles gambiae and Human NADPH P450 Reductases Reveals Different 2′-5′-ADP and FMN Binding Traits


NADPH-cytochrome P450 oxidoreductase (CPR) plays a central role in chemical
detoxification and insecticide resistance in Anopheles gambiae,
the major vector for malaria. Anopheles gambiae CPR (AgCPR) was
initially expressed in Eschericia coli but failed to bind
2′, 5′-ADP Sepharose. To investigate this unusual trait, we
expressed and purified a truncated histidine-tagged version for side-by-side
comparisons with human CPR. Close functional similarities were found with
respect to the steady state kinetics of cytochrome c reduction,
with rates (kcat) of 105
s−1 and 88 s−1, respectively, for mosquito
and human CPR. However, the inhibitory effects of 2′,5′-ADP on
activity were different; the IC50 value of AgCPR for 2′,
5′ –ADP was significantly higher (6–10 fold) than human CPR
(hCPR) in both phosphate and phosphate-free buffer, indicative of a decrease in
affinity for 2′, 5′- ADP. This was confirmed by isothermal titration
calorimetry where binding of 2′,5′-ADP to AgCPR
(Kd = 410±18 nM) was
∼10 fold weaker than human CPR
(Kd = 38 nM). Characterisation
of the individual AgFMN binding domain revealed much weaker binding of FMN
(Kd = 83±2.0 nM) than the equivalent
human domain (Kd = 23±0.9 nM).
Furthermore, AgCPR was an order of magnitude more sensitive than hCPR to the
reductase inhibitor diphenyliodonium chloride
(IC50 = 28 µM±2 and 361±31
µM respectively). Taken together, these results reveal unusual biochemical
differences between mosquito CPR and the human form in the binding of small
molecules that may aid the development of ‘smart’ insecticides and
synergists that selectively target mosquito CPR.


Publisher: Public Library of Science

Date Published: 31-May-2011

Author(s): Lian L., Widdowson P., McLaughlin L., Paine M.


Leave a Reply