Research Summary: CCL21/CCR7 Promotes G2/M Phase Progression via the ERK Pathway in Human Non-Small Cell Lung Cancer Cells


C-C chemokine receptor 7 (CCR7) contributes to the survival of certain cancer cell lines, but its role in the proliferation of human non-small cell lung cancer (NSCLC) cells remains vague. Proliferation assays performed on A549 and H460 NSCLC cells using Cell Counting Kit-8 indicated that activation of CCR7 by its specific ligand, exogenous chemokine ligand 21 (CCL21), was associated with a significant linear increase in cell proliferation with duration of exposure to CCL21. The CCL21/CCR7 interaction significantly increased the fraction of cells in the G2/M phase of the cell cycle as measured by flow cytometry. In contrast, CCL21/CCR7 had no significant influence on the G0/G1 and S phases. Western blot and real-time PCR indicated that CCL21/CCR7 significantly upregulated expression of cyclin A, cyclin B1, and cyclin-dependent kinase 1 (CDK1), which are related to the G2/M phase transition. The expression of cyclin D1 and cyclin E, which are related to the G0/G1 and G1/S transitions, was not altered. The CCL21/CCR7 interaction significantly enhanced phosphorylation of extracellular signal-regulated kinase (P-ERK) but not Akt, as measured by Western blot. LY294002, a selective inhibitor of PI3K that prevents activation of the downstream Akt, did not weaken the effect of CCL21/CCR7 on P-ERK. Coimmunoprecipitation further confirmed that there was an interaction between P-ERK and cyclin A, cyclin B1, or CDK1, particularly in the presence of CCL21. CCR7 small interfering RNA or PD98059, a selective inhibitor of MEK that disrupts the activation of downstream ERK, significantly abolished the effects of exogenous CCL21. These results suggest that CCL21/CCR7 contributes to the time-dependent proliferation of human NSCLC cells by upregulating cyclin A, cyclin B1, and CDK1 potentially via the ERK pathway.


Publisher: Public Library of Science

Date Published: 16-June-2011

Author(s): Xu Y., Liu L., Qiu X., Jiang L., Huang B., Li H., Li Z., Luo W., Wang E.


Leave a Reply