Research Summary: Contribution of CgPDR1-Regulated Genes in Enhanced Virulence of Azole-Resistant Candida glabrata


In Candida glabrata, the transcription factor CgPdr1 is involved
in resistance to azole antifungals via upregulation of ATP binding cassette
(ABC)-transporter genes including at least CgCDR1,
CgCDR2 and CgSNQ2. A high diversity of GOF
(gain-of-function) mutations in CgPDR1 exists for the
upregulation of ABC-transporters. These mutations enhance C.
virulence in animal models, thus indicating that
CgPDR1 might regulate the expression of yet unidentified
virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s)
should be commonly regulated by all GOF mutations in CgPDR1. As
deduced from transcript profiling with microarrays, a high number of genes (up
to 385) were differentially regulated by a selected number (7) of GOF mutations
expressed in the same genetic background. Surprisingly, the transcriptional
profiles resulting from expression of GOF mutations showed minimal overlap in
co-regulated genes. Only two genes, CgCDR1 and
PUP1 (for PDR1
upregulated and encoding a mitochondrial protein), were
commonly upregulated by all tested GOFs. While both genes mediated azole
resistance, although to different extents, their deletions in an azole-resistant
isolate led to a reduction of virulence and decreased tissue burden as compared
to clinical parents. As expected from their role in C. glabrata
virulence, the two genes were expressed as well in vitro and
in vivo. The individual overexpression of these two genes
in a CgPDR1-independent manner could partially restore
phenotypes obtained in clinical isolates. These data therefore demonstrate that
at least these two CgPDR1-dependent and -upregulated genes
contribute to the enhanced virulence of C. glabrata that
acquired azole resistance.


Publisher: Public Library of Science

Date Published: 9-March-2011

Author(s): Ferrari S., Sanguinetti M., Torelli R., Posteraro B., Sanglard D.


Leave a Reply