Research Summary: Development of Models for Predicting the Predominant Taste and Odor Compounds in Taihu Lake, China


Taste and odor (T&O) problems, which have adversely affected the quality of water supplied to millions of residents, have repeatedly occurred in Taihu Lake (e.g., a serious odor accident occurred in 2007). Because these accidents are difficult for water resource managers to forecast in a timely manner, there is an urgent need to develop optimum models to predict these T&O problems. For this purpose, various biotic and abiotic environmental parameters were monitored monthly for one year at 30 sites across Taihu Lake. This is the first investigation of this huge lake to sample T&O compounds at the whole-lake level. Certain phytoplankton taxa were important variables in the models; for instance, the concentrations of the particle-bound 2-methylisoborneol (p-MIB) were correlated with the presence of Oscillatoria, whereas those of the p-β-cyclocitral and p-β-ionone were correlated with Microcystis levels. Abiotic factors such as nitrogen (TN, TDN, NO3-N, and NO2-N), pH, DO, COND, COD and Chl-a also contributed significantly to the T&O predictive models. The dissolved (d) T&O compounds were related to both the algal biomass and to certain abiotic environmental factors, whereas the particle-bound (p) T&O compounds were more strongly related to the algal presence. We also tested the validity of these models using an independent data set that was previously collected from Taihu Lake in 2008. In comparing the concentrations of the T&O compounds observed in 2008 with those concentrations predicted from our models, we found that most of the predicted data points fell within the 90% confidence intervals of the observed values. This result supported the validity of these models in the studied system. These models, basing on easily collected environmental data, will be of practical value to the water resource managers of Taihu Lake for evaluating the probability of T&O accidents.


Publisher: Public Library of Science

Date Published: 19-December-2012

Author(s): Qi M., Chen J., Sun X., Deng X., Niu Y., Xie P.


Leave a Reply

Your email address will not be published. Required fields are marked *