Research Summary: Gap Junctions and Epileptic Seizures – Two Sides of the Same Coin?


Electrical synapses (gap junctions) play a pivotal role in the synchronization of
neuronal ensembles which also makes them likely agonists of pathological brain
activity. Although large body of experimental data and theoretical
considerations indicate that coupling neurons by electrical synapses promotes
synchronous activity (and thus is potentially epileptogenic), some recent
evidence questions the hypothesis of gap junctions being among purely
epileptogenic factors. In particular, an expression of inter-neuronal gap
junctions is often found to be higher after the experimentally induced seizures
than before. Here we used a computational modeling approach to address the role
of neuronal gap junctions in shaping the stability of a network to perturbations
that are often associated with the onset of epileptic seizures. We show that
under some circumstances, the addition of gap junctions can increase the
dynamical stability of a network and thus suppress the collective electrical
activity associated with seizures. This implies that the experimentally observed
post-seizure additions of gap junctions could serve to prevent further
escalations, suggesting furthermore that they are a consequence of an adaptive
response of the neuronal network to the pathological activity. However, if the
seizures are strong and persistent, our model predicts the existence of a
critical tipping point after which additional gap junctions no longer suppress
but strongly facilitate the escalation of epileptic seizures. Our results thus
reveal a complex role of electrical coupling in relation to epileptiform events.
Which dynamic scenario (seizure suppression or seizure escalation) is ultimately
adopted by the network depends critically on the strength and duration of
seizures, in turn emphasizing the importance of temporal and causal aspects when
linking gap junctions with epilepsy.


Publisher: Public Library of Science

Date Published: 31-May-2011

Author(s): Volman V., Perc M., Bazhenov M.


Leave a Reply